Friday, 2 February 2024

R Nuts and Bolts Part-I

4.1 Entering Input

At the R prompt we type expressions. The <- symbol is the assignment operator.

> x <- 1
> print(x)
[1] 1
> x
[1] 1
> msg <- "hello"

The grammar of the language determines whether an expression is complete or not.

x <-  ## Incomplete expression

The # character indicates a comment. Anything to the right of the # (including the # itself) is ignored. This is the only comment character in R. Unlike some other languages, R does not support multi-line comments or comment blocks.

4.2 Evaluation

When a complete expression is entered at the prompt, it is evaluated and the result of the evaluated expression is returned. The result may be auto-printed.

> x <- 5  ## nothing printed
> x       ## auto-printing occurs
[1] 5
> print(x)  ## explicit printing
[1] 5

The [1] shown in the output indicates that x is a vector and 5 is its first element.

Typically with interactive work, we do not explicitly print objects with the print function; it is much easier to just auto-print them by typing the name of the object and hitting return/enter. However, when writing scripts, functions, or longer programs, there is sometimes a need to explicitly print objects because auto-printing does not work in those settings.

When an R vector is printed you will notice that an index for the vector is printed in square brackets [] on the side. For example, see this integer sequence of length 20.

> x <- 11:30
> x
 [1] 11 12 13 14 15 16 17 18 19 20 21 22
[13] 23 24 25 26 27 28 29 30

The numbers in the square brackets are not part of the vector itself, they are merely part of the printed output.

With R, it’s important that one understand that there is a difference between the actual R object and the manner in which that R object is printed to the console. Often, the printed output may have additional bells and whistles to make the output more friendly to the users. However, these bells and whistles are not inherently part of the object.

Note that the : operator is used to create integer sequences.

4.3 R Objects

R has five basic or “atomic” classes of objects:

  • character

  • numeric (real numbers)

  • integer

  • complex

  • logical (True/False)

The most basic type of R object is a vector. Empty vectors can be created with the vector() function. There is really only one rule about vectors in R, which is that A vector can only contain objects of the same class.

But of course, like any good rule, there is an exception, which is a list, which we will get to a bit later. A list is represented as a vector but can contain objects of different classes. Indeed, that’s usually why we use them.

There is also a class for “raw” objects, but they are not commonly used directly in data analysis and I won’t cover them here.

4.4 Numbers

Numbers in R are generally treated as numeric objects (i.e. double precision real numbers). This means that even if you see a number like “1” or “2” in R, which you might think of as integers, they are likely represented behind the scenes as numeric objects (so something like “1.00” or “2.00”). This isn’t important most of the time…except when it is.

If you explicitly want an integer, you need to specify the L suffix. So entering 1 in R gives you a numeric object; entering 1L explicitly gives you an integer object.

There is also a special number Inf which represents infinity. This allows us to represent entities like 1 / 0. This way, Inf can be used in ordinary calculations; e.g. 1 / Inf is 0.

The value NaN represents an undefined value (“not a number”); e.g. 0 / 0; NaN can also be thought of as a missing value (more on that later)

4.5 Attributes

R objects can have attributes, which are like metadata for the object. These metadata can be very useful in that they help to describe the object. For example, column names on a data frame help to tell us what data are contained in each of the columns. Some examples of R object attributes are

  • names, dimnames

  • dimensions (e.g. matrices, arrays)

  • class (e.g. integer, numeric)

  • length

  • other user-defined attributes/metadata

Attributes of an object (if any) can be accessed using the attributes() function. Not all R objects contain attributes, in which case the attributes() function returns NULL.

4.6 Creating Vectors

The c() function can be used to create vectors of objects by concatenating things together.

> x <- c(0.5, 0.6)       ## numeric
> x <- c(TRUE, FALSE)    ## logical
> x <- c(T, F)           ## logical
> x <- c("a", "b", "c")  ## character
> x <- 9:29              ## integer
> x <- c(1+0i, 2+4i)     ## complex

Note that in the above example, T and F are short-hand ways to specify TRUE and FALSE. However, in general one should try to use the explicit TRUE and FALSE values when indicating logical values. The T and F values are primarily there for when you’re feeling lazy.

You can also use the vector() function to initialize vectors.

> x <- vector("numeric", length = 10) 
> x
 [1] 0 0 0 0 0 0 0 0 0 0

4.7 Mixing Objects

There are occasions when different classes of R objects get mixed together. Sometimes this happens by accident but it can also happen on purpose. So what happens with the following code?

> y <- c(1.7, "a")   ## character
> y <- c(TRUE, 2)    ## numeric
> y <- c("a", TRUE)  ## character

In each case above, we are mixing objects of two different classes in a vector. But remember that the only rule about vectors says this is not allowed. When different objects are mixed in a vector, coercion occurs so that every element in the vector is of the same class.

In the example above, we see the effect of implicit coercion. What R tries to do is find a way to represent all of the objects in the vector in a reasonable fashion. Sometimes this does exactly what you want and…sometimes not. For example, combining a numeric object with a character object will create a character vector, because numbers can usually be easily represented as strings.

R Nuts and Bolts Part-II Check Here

Wednesday, 31 January 2024

Monday, 29 January 2024

Getting Started with R

Taking the first plunge into R might seem daunting, but it's an exciting journey into the world of data analysis and visualization. To make it smooth, let's break down the process into simple steps:

1. Install R and RStudio:

2. Learn the Basics:

3. Explore Data Structures:

  • Understand how R stores and manipulates data through vectors, matrices, data frames, and lists.
  • Practice creating, accessing, and modifying elements within these structures.

4. Perform Basic Operations:

  • Learn fundamental R operators for arithmetic, logical, and data manipulation.
  • Experiment with control flow statements like if, for, and while to control program execution.

5. Visualization is Key:

  • R's ggplot2 package offers powerful tools for creating beautiful and informative plots.
  • Explore basic ggplot2 functions to make scatter plots, bar charts, histograms, and more.

6. Practice Makes Perfect:

  • Work on small projects with real or simulated data sets.
  • Join online communities and forums like Stack Overflow to ask questions and learn from others.
  • Take online courses or follow learning paths to progressively tackle more advanced topics.

Advertisement

Follow US

Join 12,000+ People Following

Notifications

More

Results

More

Java Tutorial

More

Digital Logic design Tutorial

More

syllabus

More

ANU Materials

More

Advertisement

Top